Заказать звонок


все коммерческие предложения высылать на [email protected]
для оформления заявок [email protected]



Как работает усилитель звука


Как работает усилитель звуковой частоты

Добрый день уважаемый хабраюзер, я хочу рассказать тебе о основах построения усилителей звуковой частоты. Я думаю эта статья будет интересна тебе если ты никогда не занимался радиоэлектроникой, и конечно же она будет смешна тем кто не расстаётся с паяльником. И поэтому я попытаюсь расказать о данной теме как можно проще и к сожалению опуская некоторые нюансы.

Усилитель звуковой частоты или усилитель низкой частоты, что бы разобраться как он всё таки работает и зачем там так много всяких транзисторов, резисторов и конденсаторов, нужно понять как работает каждый элемент и попробовать узнать как эти элементы устроены. Для того что бы собрать примитивный усилитель нам понадобятся три вида электронных элементов: резисторы, конденсаторы и конечно транзисторы.

Резистор
Итак, резисторы у нас характеризуются сопротивлением электрическому току и это сопротивление измеряется в Омах. Каждый электропроводящий металл или сплав металлов имеют своё удельное сопротивление. Если мы возьмём проволоку определённой длинны с большим удельным сопротивлением, то у нас получится самый настоящий проволочный резистор. Для того что бы резистор был компактным, проволоку можно намотать на каркас. Таким образом у нас получится проволочный резистор, но он имеет ряд недостатков, поэтому резисторы обычно изготавливаются из металлокерамического материала. Вот так обозначаются резисторы на электрических схемах: Верхний вариант обозначения принят в США, нижний в России и в Европе.
Конденсатор
Конденсатор представляет из себя две металлических пластины разделённые диэлектриком. Если мы подадим на эти пластины постоянное напряжение, то появится электрическое поле, которое после отключения питания будет поддерживать на пластинах положительный и отрицательный заряды соответственно. Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик Таким образом конденсатор способен накапливать электрический заряд. Эта способность накапливать электрический заряд называется электрическая ёмкость, что есть главный параметр конденсатора. Электрическая ёмкость измеряется в Фарадах. Что ещё характерно, это то что когда мы заряжаем или разряжаем конденсатор, через него идёт электрический ток. Но как только конденсатор зарядился, он перестаёт пропускать электрический ток, а это потому что конденсатор принял заряд источника питания, то есть потенциал конденсатора и источника питания одинаковые, а если нет разности потенциалов (напряжения), нет электрического тока. Таким образом, заряженный конденсатор не пропускает постоянный электрический ток, но пропускает переменный ток, так как при подключении его к переменному электрическому току, он будет постоянно заряжаться и разряжаться. На электрических схемах его обозначают так:
Транзистор
В нашем усилителе мы будем использовать самые простые биполярные транзисторы. Транзистор изготавливают из полупроводникового материала. Нужное для нас свойство это материала, — наличие в них свободных носителей как положительных, так и отрицательных зарядов. В зависимости от того каких зарядов больше, полупроводники различают на два типа по проводимости: n-тип и p-тип (n-negative, p-positive). Отрицательные заряды — это электроны, освободившиеся с внешних оболочек атомов кристаллической решетки, а положительные — так называемые дырки. Дырки — это вакантные места, остающиеся в электронных оболочках после ухода из них электронов. Условно обозначим атомы с электроном на на внешней орбите синим кружком со знаком минус, а атомы с вакантным местом — пустым кружком: Каждый биполярный транзистор состоит из трёх зон таких полупроводников, эти зоны называют база, эмиттер и коллектор.

Рассмотрим пример работы транзистора. Для этого подключим к транзистору две батарейки на 1,5 и на 5 вольт, плюсом к эмиттеру, а минусом к базе и коллектору соответственно (смотрим рисунок):

На контакте базы и эмиттера появится электромагнитное поле, которое буквально вырывает электроны с внешней орбиты атомов базы и переносит их в эмиттер. Свободные электроны оставляют за собой дырки, и занимают вакантные места уже в эмиттере. Это же электромагнитное поле оказывает такое же воздействие на атомы коллектора, а так как база в транзисторе достаточно тонкая относительно эмиттера и коллектора, электроны коллектора достаточно легко проходят сквозь неё в эмиттер, причём в гораздо большем количестве чем из базы. Если же мы отключим напряжение от базы, то никакого электромагнитного поля не будет, а база будет выполнять роль диэлектрика, и транзистор будет закрыт. Таким образом при подаче на базу достаточно малого напряжения, мы можем контролировать большее поданное напряжение на эмиттер и коллектор.

Рассмотренный нами транзистор pnp-типа, так как у него две p-зоны и одна n-зона. Так же существуют npn-транзисторы, принцип действия в них такой же, но электрический ток течёт в них в противоположную сторону, чем в рассмотренном нами транзисторе. Вот так биполярные транзисторы обозначаются на электрических схемах, стрелка указывает направление тока:

УНЧ
Ну что ж, попробуем спроектировать из этого всего усилитель низкой частоты. Для начала нам нужен сигнал который мы будем усиливать, это может быть звуковая карта компьютера или любое другое звуковое устройство с линейным выходом. Допустим наш сигнал с максимальной амплитудой примерно 0,5 вольта при токе 0,2 А, примерно такой:

А что бы заработал самый простой 4-х омный 10 ваттный динамик, нам нужно увеличить амплитуду сигнала до 6 вольт, при силе тока I = U / R = 6 / 4 = 1,5 A.

Итак, попробуем подключить наш сигнал к транзистору. Вспомните нашу схему с транзистором и двумя батарейками, теперь вместо 1,5 вольтовой батарейки у нас у нас сигнал линейного выхода. Резистор R1 выполняет роль нагрузки, дабы не было короткого замыкания и наш транзистор не сгорел.

Но тут возникают сразу две проблемы, во-первых наш транзистор npn-типа, и открывается только при положительном значении полуволны, а при отрицательном закрывается.

Во-вторых транзистор, как и любой полупроводниковый прибор имеет нелинейные характеристики в отношении напряжения и тока и чем меньше значения тока и напряжения тем сильнее эти искажения:

Мало того что от нашего сигнала осталась только полуволна, так она ещё и будет искажена:

Это есть так называемое искажение типа ступенька. Чтобы избавиться от этих проблем, нам нужно сместить наш сигнал в рабочую зону транзистора, где поместится вся синусоида сигнала и нелинейные искажения будут незначительны. Для этого подают на базу напряжение смещения, допустим в 1 вольт, с помощью составленного из двух резисторов R2 и R3 делителя напряжения.

А наш сигнал входящий в транзистор будет выглядеть вот так:

Теперь нам нужно изъять наш полезный сигнал с коллектора транзистора. Для этого установим конденсатор C1:

Как мы помним конденсатор пропускает переменный ток и не пропускает постоянный, поэтому он нам будет служить фильтром пропускающим только наш полезный сигнал — нашу синусоиду. А постоянная составляющая не прошедшая через конденсатор будет рассеиваться на резисторе R1. Переменный же ток, наш полезный сигнал, будет стремиться пройти через конденсатор, так сопротивление конденсатора для него ничтожно мало по сравнению с резистором R1. Вот и получился первый транзисторный каскад нашего усилителя. Но существуют ещё два маленьких нюанса: Мы не знаем на 100% какой сигнал входит в усилитель, вдруг всё таки источник сигнала неисправен, всякое бывает, опять же статическое электричество или вместе с полезным сигналом проходит постоянное напряжение. Это может стать причиной не правильной работы транзистора или даже спровоцировать его поломку. Для этого установим конденсатор С2, он подобно конденсатору С1 будет блокировать постоянный электрический ток, а так же ограниченная ёмкость конденсатора не будет пропускать пики большой амплитуды, которые могут испортить транзистор. Такие скачки напряжения обычно происходят при включении или отключении устройства.

И второй нюанс, любому источнику сигнала требуется определённая конкретная нагрузка (сопротивление). По этому для нас важно входное сопротивление каскада. Для регулировки входного сопротивления добавим в цепь эмиттера резистор R4:

Теперь мы знаем назначение каждого резистора и конденсатора в транзисторном каскаде. Давайте теперь попробуем рассчитать какие номиналы элементов нужно использовать для него. Исходные данные:
  • U = 12 В — напряжение питания;
  • U бэ ~ 1 В — Напряжение эмиттер-база рабочей точки транзистора;
Выбираем транзистор, для нас подойдёт npn-транзистор 2N2712
  • P max = 200 мВт — максимальная рассеиваемая мощность;
  • I max = 100 мА — максимальный постоянный ток коллектора;
  • U max = 18 В — макcимально допустимое напряжение коллектор-база / коллектор-эмиттер (У нас напряжение питания 12 В, так что хватает с запасом);
  • U эб = 5 В — макcимально допустимое напряжение эмиттер-база (наше напряжение 1 вольт ± 0,5 вольта);
  • h31 = 75-225 — коэффициент усиления тока базы, принимается минимальное значение — 75;
  1. Рассчитываем максимальную статическую мощность транзистора, её берут на 20% меньше максимальной рассеиваемой мощности, дабы наш транзистор не работал на пределе своих возможностей:

    P ст.max = 0,8*P max = 0,8 * 200мВт = 160 мВт;

  2. Определим ток коллектора в статическом режиме (без сигнала), не смотря на что на базу не подаётся напряжение через транзистор всё равно в малой степени протекает электрический ток.

    I к0 = P ст.max / U кэ, где U кэ — напряжение перехода коллектор-эмиттер. На транзисторе рассеивается половина напряжения питания, вторая половина будет рассеиваться на резисторах:

    U кэ = U / 2;

    I к0 = P ст.max / (U / 2) = 160 мВт / (12В / 2) = 26,7 mA;

  3. Теперь рассчитаем сопротивление нагрузки, изначально у нас был один резистор R1, который выполнял эту роль, но так как мы добавили резистор R4 для увеличения входного сопротивления каскада, теперь сопротивление нагрузки будет складываться из R1 и R4:

    R н = R1 + R4, где R н — общее сопротивление нагрузки;

    Отношение между R1 и R4 обычно принимается 1 к 10:

    R1 = R4*10;

    Рассчитаем сопротивление нагрузки:

    R1 + R4 = (U / 2) / I к0 = (12В / 2) / 26,7 mA = (12В / 2) / 0,0267 А = 224,7 Ом;

    Ближайшие номиналы резисторов это 200 и 27 Ом. R1 = 200 Ом, а R4 = 27 Ом.

  4. Теперь найдем напряжение на коллекторе транзистора без сигнала:

    U к0 = (U кэ0 + I к0 * R4) = (U — I к0 * R1) = (12В -0,0267 А * 200 Ом) = 6,7 В;

  5. Ток базы управления транзистором:

    I б = I к / h31, где I к — ток коллектора;

    I к = (U / R н);

    I б = (U / R н) / h31 = (12В / (200 Ом + 27 Ом)) / 75 = 0,0007 А = 0,07 mA;

  6. Полный ток базы определяется напряжением смещения на базе, которое устанавливается делителем R2 и R3. Ток задаваемый делителем должен быть в 5-10 раз больше тока управления базы (I б), что бы собственно ток управления базы не влиял на напряжение смещения. Таким образом для значения тока делителя (I дел) принимаем 0,7 mA и рассчитываем R2 и R3:

    R2 + R3 = U / I дел = 12В / 0,007 = 1714,3 Ом

  7. Теперь рассчитаем напряжение на эмиттере в состоянии покоя транзистора (U э):

    U э = I к0 * R4 = 0,0267 А * 27 Ом = 0,72 В

    Да, I к0 ток покоя коллектора, но этот же ток проходит и через эмиттер, так что I к0 считают током покоя всего транзистора.

  8. Рассчитываем полное напряжение на базе (U б) с учётом напряжения смещения (U см = 1В):

    U б = U э + U см = 0,72 + 1 = 1,72 В

    Теперь с помощью формулы делителя напряжения находим значения резисторов R2 и R3:

    R3 = (R2 + R3) * U б / U = 1714,3 Ом * 1,72 В / 12 В = 245,7 Ом;

    Ближайший номинал резистора 250 Ом;

    R2 = (R2 + R3) — R3 = 1714,3 Ом — 250 Ом = 1464,3 Ом;

    Номинал резистора выбираем в сторону уменьшения, ближайший R2 = 1,3 кОм.

  9. Конденсаторы С1 и С2 обычно устанавливают не менее 5 мкФ. Ёмкость выбирается такой что бы конденсатор не успевал перезаряжаться.
Заключение
На выходе каскада мы получаем пропорционально усиленный сигнал и по току и по напряжению, то есть по мощности. Но одного каскада нам не хватит для требуемого усиления, так что придётся добавлять следующий и следующий… И так далее.

Рассмотренный расчёт довольно поверхностный и такая схема усиления конечно же не используется в строении усилителей, мы не должны забывать о диапазоне пропускаемых частот, искажениях и многом другом.

Теги:
  • усилитель звуковой частоты
  • транзистор
  • каскад.
  • 21 мая 2015 в 18:41
  • 18 декабря 2014 в 16:39
  • 11 декабря 2014 в 15:32

habr.com

Усилители системы автозвука

Автомобильные усилители берут сигнал от головного устройства, усиливают его, и передают на громкоговорители. Это позволяет получить от динамиков звук мощнее и чище чем, если сигнал подавался бы непосредственно с источника сигнала на громкоговорители. Идеально, если усилитель передает сигнал линейно – сигнал на выходе по форме такой, как и на входе, только с большей амплитудой, которая определяет мощность звука. Такая передача формы сигнала называется АЧХ – амплитудно-частотной характеристикой, которая показывает, как усилитель передает сигнал на разных частотах. Чем ровнее АЧХ, тем лучше для качества сигнала.

Типы усилителей

Производители продолжают создавать новые виды усилителей, но есть три главных вида схем усилителей: класс А, класс АВ, класс D.

  1. Класс А имеет мягкий звук, но он не эффективен по КПД и сильно перегревается.
  2. Класс АВ работает намного эффективнее по КПД, но звук получится обычным, нейтральным.
  3. Усилители класса D являются самыми эффективными по потерям энергии, но они имеют низкий демпфирующий фактор, который показывает степень затухания паразитных колебаний и зависит от выходного сопротивления усилителя.

Усилители обычно делают 5 или 4 канальными, стерео 2 канальные или моноблоки с одним каналом, для подключения сабвуфера. Некоторые производители выпускают усилители и с большим количеством каналов, но они намного меньше применяются в системах автозвука.

Как работает усилитель

Нет ничего важного в принципе работы усилителя, что может пригодиться пользователю. Эта информация больше подойдет для энтузиастов, которые задают себе вопросы, как усилитель работает и как он управляет сигналом. Мы не будем углубляться в работу электрической схемы, в историю транзисторов или в принципы работы трансформаторов, скорее мы рассмотрим, что усилитель делает с сигналом, который он получает от головного устройства и проводит этот сигнал по своим путям.

Обычно считают, что усилитель берет исходный маленький сигнал и увеличивает его до определенной величины. Это верно только от части, фактически усилитель создает новый сигнал, который должен быть точной копией входного сигнала.

Сравним звуковой усилитель и копировальный аппарат. Вы, вероятно, спросите, как можно сравнивать эти две различные технологии. Но если вы делали копию на копировальном аппарате, то вы заметили, что можно с его помощью увеличить исходный документ на определенную величину. Если иметь исходное изображение и увеличить его до других размеров, то вы будете иметь два одинаковых изображения разных размеров, но на разных листах бумаги. Новое изображение – большая копия старой картинки, то есть это новый лист со своим изображением. Теперь перенесем эти принципы работы в усилитель. Он берет сигнал с входа и выдает на выход уже увеличенный сигнал. Однако сигнал на выходе, подобно копировальщику, не тот же что и на входе. Увеличение сигнала происходит только по амплитуде, но не в длине звуковой волны иначе это будут уже помехи и искажения сигнала и копии точной не получиться. Эта аналогия должна вам дать общее представление о работе усилителя.

Усилитель берет слабый сигнал от источника, например, CD проигрывателя и увеличивает его для нормальной работы динамиков. И хотя это не один и тот же сигнал отличие между ними заключается только в их мощности.

Сигналы

Первый шаг к пониманию работы усилителя – это понятие о сигналах. Сигналы используются, чтобы передать данные из одного места в другое. Есть два вида сигнала – аналоговые и цифровые. В нашем примере используется аналоговый сигнал, который передается по аудио кабелям и представляет собой аналогию звуковой волны в электрической форме с помощью изменяющегося уровня напряжения. Головное устройство по кабелям передает в усилитель электрический сигнал, соответствующий звуку (музыке).

Большинство усилителей обрабатывают входной сигнал с помощью трех узлов

1 Входная схема усилителя

Источники звука отличаются по выходному напряжению. Первое головное устройство может подать на усилитель сигнал в 1 вольт, когда другое может подать тот же сигнал уже с напряжением в 3 вольта. Усилители должны быть способны обрабатывать сигналы разного уровня. Некоторые усилители, особенно штатные, способны обрабатывать только один уровень сигнала, но большинство усилителей обрабатывает два уровня сигналов от источника звука. Один высокий уровень позволяет к головному устройству подключать сразу динамики, а второй низкий уровень сигнала должен пройти через усилитель.

Обязательно чувствительность входной схемы усилителя должна соответствовать уровню сигнала выхода головного устройства. Входная чувствительность регулируется в усилителе и определяет коэффициент усиления, но большая входная чувствительность может привести к большим искажениям сигнала. Поэтому нужно контролировать уровень громкости по регулятору громкости источника сигнала. Ведь регулировка чувствительности используется только что бы устранить несоответствие в уровнях выходного сигнала различных элементов в системе автозвука. Другими словами, если регулятор громкости устанавливается в максимум и на усилитель идет максимальный по уровню сигнал, и нет искажений в динамиках, то в усилителе входная чувствительность отрегулирована правильно.

2 Блок питания

Блок питания отвечает за преобразование напряжения питания автомобиля (напряжение от аккумулятора) в более высокое напряжение. Обычно напряжение с аккумулятора подается постоянное на уровне 13,8 вольт. Это маленькое напряжение и его не достаточно что бы запустить динамики на звуковую мощность требуемую пользователем. Все автомобильные динамики имеют постоянное сопротивление, в среднем это сопротивление равно 4 Ом.

Если мы будем подавать на наш усилитель питание 13,8 вольт и подключим на выход динамики сопротивлением 4 Ом, то максимальная возможная мощность, которую мы сможем получить, составит не больше 49 Вт. Ведь по формуле мощность (Р) равняется напряжению (V), взятому в квадрате, деленному на сопротивление (R). Если взять питание аккумулятора в 13,8 вольт и возвести в квадрат, то получим 190. Громкоговорители имеют сопротивление 4 Ом, это значение и подставим в формулу. Поделив 190 на 4, получаем максимально возможную мощность нашего усилителя равную 47,5 Ватт, и это с условием, что КПД усилителя 100%.

Если подключить к усилителю динамики на 2 Ом (что плохо может сказаться на качестве звука), и подставим это значение в формулу мощности, то получим максимальную мощность в 95 Ватт. Но и этого может не хватить для большого 15 дюймового низкочастотного динамика.

Так как можно увеличить мощность на выходе усилителя? Ответ один – повысить питающее напряжение. Очевидно, что повысить напряжение питающей сети автомобиля мы не можем, значит, эту задачу будет выполнять усилитель. Фактически, повышение и контроль напряжения — это работа усилителя.

Повышение напряжения осуществляется блоком питания усилителя. Большой и мощный блок питания означает, что выходной каскад усилителя сможет лучше выполнить свою работу и подать на динамики большую мощность. Что бы повысить напряжение сети автомобиля блок питания усилителя использует трансформатор.

Трансформатор – устройство, которое берет напряжение одного уровня и изменяет его на напряжение другого уровня. Трансформаторы бывают повышающие или понижающие. Это означает, что они берут напряжение определенного уровня и на выходе выдают или повышенное или пониженное напряжение. Типичный понижающий трансформатор используется в системах промышленных электропередающих линий, когда нужно понизить напряжение с передающих линий в несколько киловольт до 220 вольт, используемых в наших домах. В автомобильных усилителях используется повышающий трансформатор, который берет напряжение автомобиля и повышает его до уровня, необходимого усилителю для нормальной работы.

Поскольку аудио сигнал – это сигнал АС (переменный ток), то нам понадобиться и положительное и отрицательное напряжение для работы динамиков. Что бы реализовать это с трансформатора снимается два постоянных напряжения, которые противоположны друг другу. Одно из этих напряжений управляет положительными колебаниями сигнала, а другое – отрицательными колебаниями. При комбинации этих колебаний получиться сигнал АС.

Если у нас блок питания, который выдает +25 вольт, то он должен выдавать и -25 вольт. Это положительное и отрицательное напряжение питания усилителя. В этом примере разница напряжения будет 50 вольт. Если подставить это значение в формулу мощности, рассмотренную выше, то получиться максимально возможная мощность усилителя 625 Ватт. Если сказать другими словами, то усилитель имеет пиковую мощность 625 Ватт.

Большая разница напряжения блока питания дает возможность усилителю выдать больше мощности на динамики. Считается, что при питании с большим напряжением усилитель будет иметь больший «headroom» (это зона на шкале уровня сигнала в dB, где кратковременные пики аудио сигнала не приводят к искажениям звука, другими словами – больший уровень сигнала без искажений), чем усилитель с меньшим уровнем питания.

3 Выходной каскад

Выходной каскад усилителя выдает сигнал, который напрямую подается на громкоговорители. Главными элементами выходного каскада являются мощные транзисторы. Наиболее популярными выходными транзисторами являются MOSFET. Транзисторы служат ключами для подачи повышенного напряжения с блока питания на выход усилителя. Что бы сделать это они преобразуют напряжение от блока питания в нужную форму сигнала.

Помните определение сигнала из этой статьи выше? Вот этот сигнал и служит для управления открыванием и закрыванием транзисторов выходного каскада. Так фактически входной сигнал управляет транзисторами, что бы напряжение с блока питания приняло форму аудио сигнала. То есть он переводит транзисторы во включенное и отключенное состояние в соответствии с входным сигналом, когда они воспроизводят входной сигнал в более мощной форме, который подается на выход усилителя и затем на динамики.

vallum.ru

Для начинающих. Как работает усилитель

В настоящей статье рассматривается принцип действия электронных усилителей низкой частоты.

Основные свойства электронной лампы

Сила тока, протекающего через лампу, зависит от напряжений, приложенных к ее аноду и управляющей сетке. Чем выше положительное напряжение на аноде, тем больший ток протекает через лампу и наоборот. Однако влияние анодного напряжения невелико, и, чтобы получить заметное изменение анодного тока, необходимо довольно сильно изменить напряжение на аноде.

Значительно больше на величину анодного тока влияет напряжение на управляющей сетке, расположенной между анодом и катодом лампы. Если это напряжение положительно, то управляющая сетка помогает аноду притягивать к себе электроны, и через лампу протекает относительно большой ток. Если же напряжение на управляющей сетке отрицательно, то она возвращает обратно к катоду лампы часть из электронов, направившихся к аноду, вследствие чего анодный ток оказывается значительно меньшим, чем в предыдущем случае. Наконец, при определенном отрицательном напряжении на управляющей сетке она полностью преодолевает притягивающее действие анода и возвращает обратно к катоду все вылетающие из него электроны. В результате этого ток через лампу прекращается.

Рис. 1. Схема для снятия статических характеристик лампы

Если включить лампу так, как показано на рис. 1, то, изменяя с помощью потенциометра R1 напряжение Uс на ее управляющей сетке и поддерживая потенциометром R2 неизменным напряжение на аноде, можно снять характеристику зависимости анодного тока лампы Iа от напряжения Uc , называемую статической (рис. 2,а). По вертикальной оси графика отложены значения анодного тока в миллиамперах, а по горизонтальной — напряжения на сетке в вольтах. Пунктирной линией со стрелками показано, как с помощью такой характеристики определить ток, протекающий через лампу при данном напряжении на ее сетке.

Рис. 2. а — статическая характеристика лампы (пунктирной линией со стрелками показано, как определить анодный ток лампы при требуемом напряжении на ее управляющей сетке); б — семейство статических характеристик ламп, снятых при различных напряжениях на аноде

Статическая характеристика показывает, что, изменяя напряжение на сетке лампы, можно управлять ее анодным током. Чем круче идет кривая зависимости Iа от Uс, тем больше меняется анодный ток при одинаковом изменении напряжения на управляющей сетке. Для количественной оценки этого свойства лампы, различных расчетов и сравнения ламп между собой введен специальный параметр, называемый крутизной характеристики и обозначаемый буквой S. Он показывает, на сколько миллиампер изменится ток лампы при изменении напряжения на управляющей сетке на 1 В, и имеет размерность мА/ В.

Группа статических характеристик одной и той же лампы, снятых при различных анодных напряжениях (рис. 2,6), называется семейством характеристик.

Принцип действия усилителя

Рассмотрим теперь процессы, происходящие в усилителе. Предположим, что в цепь управляющей сетки лампы (рис. 3) включены последовательно батарея Бс, дающая напряжение смещения Uc0 и источник И электрических колебаний звуковой частоты, например микрофон или звукосниматель, развивающий небольшое переменное напряжение Uc~ . В этом случае результирующее напряжение Uск на управляющей сетке остается все время отрицательным относительно катода, но меняется по величине в соответствии с подводимым переменным напряжением Uc~_ (график в верху рис. 3).

Если установить переключатель П в положение 1, то анод лампы окажется присоединенным непосредственно к батарее Ба и напряжение Uа на ее аноде будет оставаться неизменным и равным напряжению Eа независимо от величины тока, протекающего в анодной цепи. Следовательно, при изменении напряжения на управляющей сетке лампы значения анодного тока можно определить, пользуясь статической характеристикой лампы, снятой при напряжении на аноде, равном Eа.

Рис. 3. Схема, поясняющая принцип действия усилителя. График сверху показывает, как изменяется во времени результирующее напряжение Uск на сетке лампы

Графики, приведенные на рис. 4, показывают, как изменяется анодный ток лампы под воздействием переменного напряжения на ее управляющей сетке. На рис. 4,а, вниз от горизонтальной оси, проведена ось, по которой отложено напряжение на управляющей сетке лампы для различных моментов времени t. Рис. 4,б демонстрирует изменения во времени анодного тока лампы. Из графиков видно, что. когда переменное напряжение Uc~ отсутствует, напряжение на сетке равно напряжению смещения Uc0 (участок аб на рис. 4,а) и ток в анодной цепи остается постоянным, равным Iа0 (участок а'б' на рис. 4,6). Ток Iа0 называют током покоя.

Рис. 4. Графики, иллюстрирующие зависимость между напряжением на сетке и анодным током лампы: а — статическая характеристика лампы; б — изменение анодного тока во времени; в — постоянная составляющая анодного тока; г — переменная составляющая анодного тока

С появлением переменного напряжения Uc~ напряжение на управляющей сетке лампы начинает изменяться, в результате чего меняется и анодный ток, возрастая при положительной полуволне переменного напряжения и убывая при отрицательной (рис. 4,6). Так как характеристика лампы на рабочем участке АБ прямолинейна, изменение анодного тока происходит пропорционально изменению напряжения на сетке.

Таким образом, в результате воздействия на сетку лампы переменного напряжения анодный ток начинает периодически изменяться или пульсировать. Такой пульсирующий ток состоит из постоянного (постоянной составляющей) Iа0 (рис. 4,в) и переменного Iа~ (переменной составляющей) тока, который изменяется с частотой подводимого к сетке переменного напряжения (рис. 4,г).

Переведя переключатель П (рис. 3) в положение 2, мы включим в анодную цепь лампы в качестве нагрузки активное сопротивление Rа. Теперь анодный ток Iа, проходя через сопротивление Rа, вызовет на нем падение напряжения UR = IaRa. В состоянии покоя напряжение на аноде окажется равным Ua0.

Если подать на управляющую сетку лампы переменное напряжение, то, как и прежде, при положительной полуволне этого напряжения анодный ток будет возрастать, а при отрицательной уменьшаться. Но теперь его изменения окажутся уже значительно меньшими. Действительно, с увеличением анодного тока падение напряжения на сопротивлении Ra возрастает и напряжение на аноде лампы Ua = Ea — RaIa уменьшается, что препятствует увеличению анодного тока. При уменьшении анодного тока напряжение на аноде лампы возрастает, препятствуя этому уменьшению. Таким образом, при наличии сопротивления Ra статическая характеристика рис. 2,а уже непригодна для определения анодного тока. Так, например, при максимальном положительном значении переменного напряжения на управляющей сетке напряжение на аноде окажется равным не Ua, а некоторой величине Ua1 Следовательно, и ток для этого момента следует определять по статической характеристике, снятой при анодном напряжении Ua1 (точка Б на рис. 5,а). Соединив точки А и Б линией, получим новую характеристику, по которой можно определить величину анодного тока при наличии в анодной цепи лампы сопротивления Ra. Такая характеристика называется динамической характеристикой лампы. Она справедлива только для данного сопротивления Ra. Чем больше Ra, тем меньше изменяется анодный ток лампы при одном и том же переменном напряжении на сетке и тем положе идет динамическая характеристика.

Рис. 5. Графики, поясняющие работу лампы при активной нагрузке: а — статические и динамическая характеристики; б — зависимость анодного тока во времени; в — напряжения на аноде лампы и сопротивлении нагрузки

Пульсирующий анодный ток Iа, проходя через сопротивление Ra, создает на нем пульсирующее напряжение UR = IaRa. Напряжение на аноде лампы также является пульсирующим; оно состоит из постоянной составляющей Ua0 и переменной составляющей Ua~ изменяющейся с той же частотой, что и подводимые колебания (рис. 5,в).

Рис. 6. Определение коэффициента усиления лампы

Активные сопротивления цепи переменному и постоянному току в усилителях не всегда равны между собой. Чтобы их можно было различить, сопротивление цепи переменному току принято обозначать как Ra~.

Часть [1]  [2]

Ламповый звук
Схемотехника ламповых усилителей
Акустика
Полезные советы разработчиков Hi-End
Звук: интересные наблюдения
Теория схемотехники и звукотехники
 

musicangel.ru

Как работает усилитель звуковой частоты

Я думаю эта статья будет интересна тебе если ты никогда не занимался радиоэлектроникой, и конечно же она будет смешна тем кто не расстаётся с паяльником. И поэтому я попытаюсь расказать о данной теме как можно проще и к сожалению опуская некоторые нюансы.

Усилитель звуковой частоты или усилитель низкой частоты, что бы разобраться как он всё таки работает и зачем там так много всяких транзисторов, резисторов и конденсаторов, нужно понять как работает каждый элемент и попробовать узнать как эти элементы устроены. Для того что бы собрать примитивный усилитель нам понадобятся три вида электронных элементов: резисторы, конденсаторы и конечно транзисторы.

Резистор

Итак, резисторы у нас характеризуются сопротивлением электрическому току и это сопротивление измеряется в Омах. Каждый электропроводящий металл или сплав металлов имеют своё удельное сопротивление. Если мы возьмём проволоку определённой длинны с большим удельным сопротивлением, то у нас получится самый настоящий проволочный резистор. Для того что бы резистор был компактным, проволоку можно намотать на каркас. Таким образом у нас получится проволочный резистор, но он имеет ряд недостатков, поэтому резисторы обычно изготавливаются из металлокерамического материала. Вот так обозначаются резисторы на электрических схемах:

Верхний вариант обозначения принят в США, нижний в России и в Европе.

Конденсатор

Конденсатор представляет из себя две металлических пластины разделённые диэлектриком. Если мы подадим на эти пластины постоянное напряжение, то появится электрическое поле, которое после отключения питания будет поддерживать на пластинах положительный и отрицательный заряды соответственно.

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

Таким образом конденсатор способен накапливать электрический заряд. Эта способность накапливать электрический заряд называется электрическая ёмкость, что есть главный параметр конденсатора. Электрическая ёмкость измеряется в Фарадах. Что ещё характерно, это то что когда мы заряжаем или разряжаем конденсатор, через него идёт электрический ток. Но как только конденсатор зарядился, он перестаёт пропускать электрический ток, а это потому что конденсатор принял заряд источника питания, то есть потенциал конденсатора и источника питания одинаковые, а если нет разности потенциалов (напряжения), нет электрического тока. Таким образом, заряженный конденсатор не пропускает постоянный электрический ток, но пропускает переменный ток, так как при подключении его к переменному электрическому току, он будет постоянно заряжаться и разряжаться. На электрических схемах его обозначают так:

Транзистор

В нашем усилителе мы будем использовать самые простые биполярные транзисторы. Транзистор изготавливают из полупроводникового материала. Нужное для нас свойство это материала, — наличие в них свободных носителей как положительных, так и отрицательных зарядов. В зависимости от того каких зарядов больше, полупроводники различают на два типа по проводимости: n-тип и p-тип (n-negative, p-positive). Отрицательные заряды — это электроны, освободившиеся с внешних оболочек атомов кристаллической решетки, а положительные — так называемые дырки. Дырки — это вакантные места, остающиеся в электронных оболочках после ухода из них электронов. Условно обозначим атомы с электроном на на внешней орбите синим кружком со знаком минус, а атомы с вакантным местом — пустым кружком:

Каждый биполярный транзистор состоит из трёх зон таких полупроводников, эти зоны называют база, эмиттер и коллектор.

Рассмотрим пример работы транзистора. Для этого подключим к транзистору две батарейки на 1,5 и на 5 вольт, плюсом к эмиттеру, а минусом к базе и коллектору соответственно (смотрим рисунок):

На контакте базы и эмиттера появится электромагнитное поле, которое буквально вырывает электроны с внешней орбиты атомов базы и переносит их в эмиттер. Свободные электроны оставляют за собой дырки, и занимают вакантные места уже в эмиттере. Это же электромагнитное поле оказывает такое же воздействие на атомы коллектора, а так как база в транзисторе достаточно тонкая относительно эмиттера и коллектора, электроны коллектора достаточно легко проходят сквозь неё в эмиттер, причём в гораздо большем количестве чем из базы.

Если же мы отключим напряжение от базы, то никакого электромагнитного поля не будет, а база будет выполнять роль диэлектрика, и транзистор будет закрыт. Таким образом при подаче на базу достаточно малого напряжения, мы можем контролировать большее поданное напряжение на эмиттер и коллектор.

Рассмотренный нами транзистор pnp-типа, так как у него две p-зоны и одна n-зона. Так же существуют npn-транзисторы, принцип действия в них такой же, но электрический ток течёт в них в противоположную сторону, чем в рассмотренном нами транзисторе. Вот так биполярные транзисторы обозначаются на электрических схемах, стрелка указывает направление тока:

УНЧ

Ну что ж, попробуем спроектировать из этого всего усилитель низкой частоты. Для начала нам нужен сигнал который мы будем усиливать, это может быть звуковая карта компьютера или любое другое звуковое устройство с линейным выходом. Допустим наш сигнал с максимальной амплитудой примерно 0,5 вольта при токе 0,2 А, примерно такой:

А что бы заработал самый простой 4-х омный 10 ваттный динамик, нам нужно увеличить амплитуду сигнала до 6 вольт, при силе тока I = U / R = 6 / 4 = 1,5 A.

Итак, попробуем подключить наш сигнал к транзистору. Вспомните нашу схему с транзистором и двумя батарейками, теперь вместо 1,5 вольтовой батарейки у нас у нас сигнал линейного выхода. Резистор R1 выполняет роль нагрузки, дабы не было короткого замыкания и наш транзистор не сгорел.

Но тут возникают сразу две проблемы, во-первых наш транзистор npn-типа, и открывается только при положительном значении полуволны, а при отрицательном закрывается.

Во-вторых транзистор, как и любой полупроводниковый прибор имеет нелинейные характеристики в отношении напряжения и тока и чем меньше значения тока и напряжения тем сильнее эти искажения:

Мало того что от нашего сигнала осталась только полуволна, так она ещё и будет искажена:

Это есть так называемое искажение типа ступенька.

Дабы избавиться от этих проблем, нам нужно сместить наш сигнал в рабочую зону транзистора, где поместится вся синусоида сигнала и нелинейные искажения будут незначительны. Для этого подают на базу напряжение смещения, допустим в 1 вольт, с помощью составленного из двух резисторов R2 и R3 делителя напряжения.

А наш сигнал входящий в транзистор будет выглядеть вот так:

Теперь нам нужно изъять наш полезный сигнал с коллектора транзистора. Для этого установим конденсатор C1:

Как мы помним конденсатор пропускает переменный ток и не пропускает постоянный, поэтому он нам будет служить фильтром пропускающим только наш полезный сигнал — нашу синусоиду. А постоянная составляющая не прошедшая через конденсатор будет рассеиваться на резисторе R1. Переменный же ток, наш полезный сигнал, будет стремиться пройти через конденсатор, так сопротивление конденсатора для него ничтожно мало по сравнению с резистором R1.

Вот и получился первый транзисторный каскад нашего усилителя. Но существуют ещё два маленьких нюанса:

Мы не знаем на 100% какой сигнал входит в усилитель, вдруг всё таки источник сигнала неисправен, всякое бывает, опять же статическое электричество или вместе с полезным сигналом проходит постоянное напряжение. Это может стать причиной не правильной работы транзистора или даже спровоцировать его поломку. Для этого установим конденсатор С2, он подобно конденсатору С1 будет блокировать постоянный электрический ток, а так же ограниченная ёмкость конденсатора не будет пропускать пики большой амплитуды, которые могут испортить транзистор. Такие скачки напряжения обычно происходят при включении или отключении устройства.

И второй нюанс, любому источнику сигнала требуется определённая конкретная нагрузка (сопротивление). По этому для нас важно входное сопротивление каскада. Для регулировки входного сопротивления добавим в цепь эмиттера резистор R4:

Теперь мы знаем назначение каждого резистора и конденсатора в транзисторном каскаде. Давайте теперь попробуем рассчитать какие номиналы элементов нужно использовать для него.

Исходные данные:

U = 12 В — напряжение питания; U бэ ~ 1 В — Напряжение эмиттер-база рабочей точки транзистора;

Выбираем транзистор, для нас подойдёт npn-транзистор 2N2712

P max = 200 мВт — максимальная рассеиваемая мощность; I max = 100 мА — максимальный постоянный ток коллектора; U max = 18 В — макcимально допустимое напряжение коллектор-база / коллектор-эмиттер (У нас напряжение питания 12 В, так что хватает с запасом); U эб = 5 В — макcимально допустимое напряжение эмиттер-база (наше напряжение 1 вольт ± 0,5 вольта);

h31 = 75-225 — коэффициент усиления тока базы, принимается минимальное значение — 75;

soundbass.org.ua

Как работают усилители звука (усилители низких частот)

Звук, всё, что мы слышим, есть синусоидальное колебание. То есть такое, как на рис.1.

Сначала ток течет в одну сторону, напряжение увеличивается, идет вверх по шкале U, потом в другую, вниз. Это как линейка - зажать один край в тисках, а по второму ударить - она издаст звук.  Если к второму краю линейки прицепить карандаш, ударить и мимо провести лист бумаги, то карандаш нарисует нам именно такое колебание. Правда, затухающее.  Звух затухать будет.

Нам надо в динамик подать звук, то есть тот же синус, только усиленный. Бумага динамика будет описывать колебания такие же, как конец линейки – вперед/назад.

Смотрим рис.2. Это общая схема усилителя на одном транзисторе, или как еще называют, однокаскадного усилителя.

Динамик (или наушники) мы подключаем к конденсатору С2, прямо в точки ВЫХОД. На коллекторе транзистора устанавливается напряжение, равное половине питания, то есть нам транзистор надо открыть наполовину - это условие работы этого усилителя. То есть если у нас питание 12вольт, то на коллекторе будет 6вольт. Поскольку конденсатор не пропускает через себя постоянное напряжение (которое установилось на коллекторе), на ВЫХОДЕ усилителя будет 0, ничо не будет на нем. Пусто.

Если на ВХОД усилителя подать слабый сигнал, то напряжение на коллекторе будет меняться сначала вверх по шкале U (то есть увеличиваться до напряжения питания), потом вниз по шкале U (то есть уменьшаться до нуля). Транзистор в это время сначала запирается вообще (то есть увеличивается напряжение на коллекторе - это делает резистор R2), затем открывается полностью (уменьшается напряжение на коллекторе). То есть на коллекторе у нас действуют сразу два напряжения - одно постоянное установившееся, а второе - усиленный входной сигнал. Вот этот усиленный входной сигнал есть уже не постоянное, а переменное напряжение, которое легко проходит через конденсатор С2 и поступает на ВЫХОД усилителя.

Резистор R1 нужен для того, чтобы открыть транзистор ровно наполовину, чтобы обеспечить на коллекторе напряжение в полпитания. ДЛЯ ЧЕГО это нужно:

Транзистору нужно подать на базу напряжение порядка 0,7В, чтобы он открылся. То есть если без резистора R1 мы подадим входной сигнал, транзистор просто тупо проигнорирует его, если он будет меньше 0,7В. Например, с микрофона мы можем получить всего 0,001В звука, с головки магнитофона - 0,0003В. Мало, до 0,7В не дотягивает J  Резистор поддает эти самые 0,7В на базу, так, что если мы к ним подкинем еще 0,001В, транзистор уже заберет их и выдаст нам усиленный сигнал.

Конденсатор С1 делает то же самое, что и С2, только для входного сигнала. То есть он не пропускает постоянное напряжение откуда-нибудь на базу, чтобы оно не мешалось, и не выпускает наружу базовое напряжение, чтобы оно не мешалось кому-нибудь перед усилителем. Для звука же конденсатор ничего не запрещает 

Все резисторы рассчитываются по статическим и проходным характеристикам транзистора - по графикам, с линейкой и с калькулятором

Транзисторы могут работать в разных режимах. Эти режимы называются классом работы. Класс работы определяет свои характеристики и свойства усилителю.

Итак, только что мы рассмотрели усилитель, работающий в классе А. Его особенности:

- транзистор открыт наполовину. Через него всегда течет некий ток, называемый током покоя. Даже если мы не кричим в микрофон, всё равно ток покоя течет.

- искажения усилителя в классе А очень небольшие. Ну разумеется, если всё грамотно рассчитать и спаять J

- усилитель в классе А имеет самый плохой КПД – не выше 50%. Половину мощности, которую усилитель ест от блока питания, он рассеивает в тепло. Впустую, так сказать. Но очень любят его из-за малых искажений, а еще – часто используют в однокаскадных усилителях.

Посмотрим на усилитель в классе B.

Схемка посложнее, но мы можем видеть транзистор Q1, работающий в классе А, старый резистор R2 теперь уже состоит из двух резисторов, R2 и R3, а вот транзисторы Q2 и Q3 у нас новенькие J Давайте изучать.

Как мы помним, на коллекторе первого транзистора у нас будет половина напряжения питания. Чуть побольше напряжение будет в точке соединения резисторов R2 и R3 – она ближе к плюсу питания. Так вот, на базах выходных транзисторов будет маленькая разница напряжений, из-за которой они немного приоткрываются и готовы качать наш динамик что есть силы J

С динамиком работают уже 2 транзистора, а не один, как в первой схеме. Смотрим:

Когда край линейки летит вверх, наш график описывает верхнюю свою часть. Она называется полуволной. Эту часть звука усиливает транзистор Q2 – ведь напряжение на его базе увеличилось, он открылся. Второй же выходной транзистор, Q3, в это время ждет своей очереди. Ну раз уж он прямой, а не обратный, как Q2, то увеличение напряжения на его базе наоборот закрывает его, и он молчит. И не мешается J А когда край линейки летит вниз, нижняя полуволна графика усиливается нижним транзистором, Q3, который молчал, молчал, а тут вдруг оживился и затарахтел J Теперь напряжение на базах уменьшается, верхний транзистор запирается, а для нижнего – раздолье и непочатый край работы J А когда край линейки снова поползет вверх, работа начинается заново.

Такая поочередная работа усилителя называется двухтактной, поскольку выходных транзисторов 2 и работают они поочереди. Первая схема была однотактной.

А еще добавлю, поскольку у нас теперь схема из двух частей – транзистор Q1 на входе и транзисторы Q2 и Q3 на выходе, назовем усилитель еще и двухкаскадным.

Те же конденсаторы C1 и C2 работают на той же должности, в целом усилитель немного сложнее, но это оправдано. Смотрим свойства:

Свойства усилителя в классе B

- транзистор открыт чуть-чуть. Приоткрыт J Ток покоя, протекающий через него, очень маленький.

- разбудить транзистор сложновато, поэтому у усилителя в классе B искажений побольше, но встречаются они редко, только на маленькой громкости.

- КПД усилителя в классе B очень высокий, вплоть до 78%. Уже неслабо J

- Класс B часто используется в двухтактных схемах, поэтому выходная мощность усилителей класса B может быть высокой. Разумеется, двухтактные усилители класса А тоже существуют, только невысокой мощности, до 100Вт, известные мне. Жарятся, как утюги J

А если мы уберем резистор R3 из предыдущей схемы, то мы просто лишим транзисторы тока покоя. Такой класс работы называется классом C.

Внешне – то же самое, только слабые сигналы усилитель не усиливает. Игнорирует. Помните про 0,7Вольта? То-то же… Зато используется класс С в генераторах, импульсных резонансных блоках питания, но никак не в звукотехнике J А КПД еще выше – нет тока покоя…

Ну это еще не всё! Класс D на подходе! Ничего нет в классе D для звука… ни резисторов, задающих наши 0,7вольта, ни конденсаторов… А раз так, то не используется класс D в звукотехнике. А просто не используется. Класс D еще называется ключевым режимом работы транзистора. Ключом называют переключатель, который или включен, или выключен. Так же и наш транзистор в классе D – или входной сигнал полностью открывает его и загорается лампочка, или не открывает, и лампочка не горит. Очень просто и КПД 99%. А звука нет. А почему усилитель? А потому что слабеньким сигналом управления мы зажигаем мощную лампу с помощью транзистора, работающего в классе D.

Свойства транзистора, работающего в классе D:

- пока нет входного сигнала, транзистор закрыт полностью. Тока покоя нет, и вообще признаков жизни не подает J

- В звукотехнике не применяется.

- Используется для управления лампами, двигателями, в цифровых схемах и других устройствах, где требуется всего 2 состояния транзистора – открыт/закрыт. КПД до 99%

 Во всем мире инженеры работают над уменьшением искажений усилителей класса D, и очень успешно – звук практически не отличить от обычного усилителя, а не греется и КПД всё так же велик – 85…99%.

В общем этого достаточно, для того чтобы понять на чем основан принцип усиления звука в ваших колоночках)

P.S. Автора этих слов найти не смог. Если таковой объявится, то конечно ссылка на него будет!

dreadlokon.blogspot.com

Устройство автомобильных усилителей — Лада 2112, 1.6 л., 2005 года на DRIVE2

Всем Привет, в этой статье хотел немного рассказать об устройстве автомобильного усилителя, может быть для кого-то окажется интересным а может быть даже полезным)) Все автомобильные усилители устроены одинаково, разница лишь в мощности и в качестве компонентов и качестве сборки. Рассмотрим устройство на 3х бюджетных усилителях, их стоимость примерно одинаковая (посмотрим какой же предпочтительней купить).Усилитель состоит из 2х основных блоков это силовой (блок питания) и аккустический который в свою очередь делится на сам усилитель и кроссовер.

устройство усилителя, по такому принципу построены все усилители

Питание в сети автомобиля 12-14.4в что крайне мало для питания усилителя свыше 20Вт, для питания мощных усилителей требуется двуполярное питание от 20 и до 50-60 вольт в зависимости от мощности усилителя. Блок питания как раз и выполняет эту функцию преобразует 12 вольт в более высокое двуполярное напряжение. В блоке питания использован задающий генератор на микросхеме TL494 и мощные транзисторы на выходе (их может быть 2 а может быть и больше 4-6) их характеристики и количество указывают на мощность усилителя, далее уже переменное напряжение поступает на трансформатор (по его размерам и толщине проводов которыми он намотан можно судить о мощности блока питания, так и о мощности усилителя в целом ведь без хорошего питания мощного усилителя не получится.

зеленым отмечен трансформатор, а синим выходные тразисторы

Теперь повышенное напряжение выпрямляется и поступает на питания самих усилителей.

блок усилителя одного канала соответственно в 2х кнальных их будет 2 а в 4х 4 таких блока

Теперь рассмотрим внутренности нескольких усилителей на фото выше изображен Blaupunkt GTA250, теперь посмотрим на Prology CA200

Prology CA200

И что мы видим? Абсолютно тот же самый усилитель собранный на тех же самых компонентах, немного различаются трансформаторы размерами они одинаковые но в первом случае он намотан большим количеством более тонких жил а во втором жил меньше но провод толще в итоге одно и тоже. Так что при выборе из этих моделей не заморачивайтесь внутри они одинаковые)))

трансформатор и выходные транзисторы блока питания Prology CA200

Следующим усилителем был Сalcell VAC90.2 стоимость его такаяже как у двух предыдущих но внутренности гораздо интересней, Трансформатор значительно больше и намотан более толстыми проводами, в выходном каскаде блока питания использовано уже на 2 а 4 транзистора, все это указывает на более высокую выходную мощность блока питания.

Calcell VAC 90.2

трансформатор и выходные тразисторы

блок усилителя в кальцеле

Теперь хотелось бы немного рассказать о простейших неисправностях встречающихся в усилителях и которые подсилу починить любому желающему. Уязвимым местом усилителя является блок питания и именно он обычно выходит из строя, реже ломается сам усилитель, и совсем резко блок кроссовера. Вскрываем усилитель и в первую очередь визуально осматриваем компаненты очень часто выходят из строя конденсаторы (вздуваются вытекают а иногда даже взрываются)

обращаем внимание на эти конденсаторы

Если все компоненты целы и нет визуально сгоревших, часто выходят из строя транзисторы выходного каскада блока питания (как их проверить можно найти в интернете или сразу заменить на новые)

проверить (заменить) эти транзисторы

Если есть напряжение питания есть, но звука нет или работает только один из каналов то переходим непосредственно к самому усилителю, здесь тоже в основном подвержены к выходу из стря выходные тразисторы усилителя (проверяем\меняем на новые)

вот эти транзисторы

Н и конечно визуально осматриваем на предмет инородных тел в усилители, вчера друг попросил посмотреть его сломавшийся усилитель, дело оказалось в том что он на на болты прикрепил куллер к корпусу усилителя, и одна из гаек открутилась упала внутрь и устроила там небольшое короткое замыкание))) после удаления гайки усилитель заработал как прежде, так что будьте внимательны в доработках усилителей)))Ну и в конце все тоже самое но в небольшом видеоролике:

:

Page 2

Всем Привет, в этой статье хотел немного рассказать об устройстве автомобильного усилителя, может быть для кого-то окажется интересным а может быть даже полезным)) Все автомобильные усилители устроены одинаково, разница лишь в мощности и в качестве компонентов и качестве сборки. Рассмотрим устройство на 3х бюджетных усилителях, их стоимость примерно одинаковая (посмотрим какой же предпочтительней купить).Усилитель состоит из 2х основных блоков это силовой (блок питания) и аккустический который в свою очередь делится на сам усилитель и кроссовер.

устройство усилителя, по такому принципу построены все усилители

Питание в сети автомобиля 12-14.4в что крайне мало для питания усилителя свыше 20Вт, для питания мощных усилителей требуется двуполярное питание от 20 и до 50-60 вольт в зависимости от мощности усилителя. Блок питания как раз и выполняет эту функцию преобразует 12 вольт в более высокое двуполярное напряжение. В блоке питания использован задающий генератор на микросхеме TL494 и мощные транзисторы на выходе (их может быть 2 а может быть и больше 4-6) их характеристики и количество указывают на мощность усилителя, далее уже переменное напряжение поступает на трансформатор (по его размерам и толщине проводов которыми он намотан можно судить о мощности блока питания, так и о мощности усилителя в целом ведь без хорошего питания мощного усилителя не получится.

зеленым отмечен трансформатор, а синим выходные тразисторы

Теперь повышенное напряжение выпрямляется и поступает на питания самих усилителей.

блок усилителя одного канала соответственно в 2х кнальных их будет 2 а в 4х 4 таких блока

Теперь рассмотрим внутренности нескольких усилителей на фото выше изображен Blaupunkt GTA250, теперь посмотрим на Prology CA200

Prology CA200

И что мы видим? Абсолютно тот же самый усилитель собранный на тех же самых компонентах, немного различаются трансформаторы размерами они одинаковые но в первом случае он намотан большим количеством более тонких жил а во втором жил меньше но провод толще в итоге одно и тоже. Так что при выборе из этих моделей не заморачивайтесь внутри они одинаковые)))

трансформатор и выходные транзисторы блока питания Prology CA200

Следующим усилителем был Сalcell VAC90.2 стоимость его такаяже как у двух предыдущих но внутренности гораздо интересней, Трансформатор значительно больше и намотан более толстыми проводами, в выходном каскаде блока питания использовано уже на 2 а 4 транзистора, все это указывает на более высокую выходную мощность блока питания.

Calcell VAC 90.2

трансформатор и выходные тразисторы

блок усилителя в кальцеле

Теперь хотелось бы немного рассказать о простейших неисправностях встречающихся в усилителях и которые подсилу починить любому желающему. Уязвимым местом усилителя является блок питания и именно он обычно выходит из строя, реже ломается сам усилитель, и совсем резко блок кроссовера. Вскрываем усилитель и в первую очередь визуально осматриваем компаненты очень часто выходят из строя конденсаторы (вздуваются вытекают а иногда даже взрываются)

обращаем внимание на эти конденсаторы

Если все компоненты целы и нет визуально сгоревших, часто выходят из строя транзисторы выходного каскада блока питания (как их проверить можно найти в интернете или сразу заменить на новые)

проверить (заменить) эти транзисторы

Если есть напряжение питания есть, но звука нет или работает только один из каналов то переходим непосредственно к самому усилителю, здесь тоже в основном подвержены к выходу из стря выходные тразисторы усилителя (проверяем\меняем на новые)

вот эти транзисторы

Н и конечно визуально осматриваем на предмет инородных тел в усилители, вчера друг попросил посмотреть его сломавшийся усилитель, дело оказалось в том что он на на болты прикрепил куллер к корпусу усилителя, и одна из гаек открутилась упала внутрь и устроила там небольшое короткое замыкание))) после удаления гайки усилитель заработал как прежде, так что будьте внимательны в доработках усилителей)))Ну и в конце все тоже самое но в небольшом видеоролике:

:

www.drive2.ru


Смотрите также